首页> 外文OA文献 >Direct ignition and S-curve transition by \u3ci\u3ein situ\u3c/i\u3e nano-second pulsed discharge in methane/oxygen/helium counterflow flame
【2h】

Direct ignition and S-curve transition by \u3ci\u3ein situ\u3c/i\u3e nano-second pulsed discharge in methane/oxygen/helium counterflow flame

机译:直接点火和s曲线过渡\ u3ci \ u3ein原位\ u3c / i \ u3e 甲烷/氧气/氦逆流火焰中的纳秒脉冲放电

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A well-defined plasma assisted combustion system with novel in situ discharge in a counterflow diffusion flame was developed to study the direct coupling kinetic effect of non-equilibrium plasma on flame ignition and extinction. A uniform discharge was generated between the burner nozzles by placing porous metal electrodes at the nozzle exits. The ignition and extinction characteristics of CH4/O2/He diffusion flames were investigated by measuring excited OH* and OH PLIF, at constant strain rates and O2 mole fraction on the oxidizer side while changing the fuel mole fraction. It was found that ignition and extinction occurred with an abrupt change of OH* emission intensity at lower O2 mole fraction, indicating the existence of the conventional ignition-extinction S-curve. However, at a higher O2 mole fraction, it was found that the in situ discharge could significantly modify the characteristics of ignition and extinction and create a new monotonic and fully stretched ignition S-curve. The transition from the conventional S-curves to a new stretched ignition curve indicated clearly that the active species generated by the plasma could change the chemical kinetic pathways of fuel oxidation at low temperature, thus resulting in the transition of flame stabilization mechanism from extinction-controlled to ignition-controlled regimes. The temperature and OH radical distributions were measured experimentally by the Rayleigh scattering technique and PLIF technique, respectively, and were compared with modeling. The results showed that the local maximum temperature in the reaction zone, where the ignition occurred, could be as low as 900 K. The chemical kinetic model for the plasma–flame interaction has been developed based on the assumption of constant electric field strength in the bulk plasma region. The reaction pathways analysis further revealed that atomic oxygen generated by the discharge was critical to controlling the radical production and promoting the chain branching effect in the reaction zone for low temperature ignition enhancement.
机译:为了研究非平衡等离子体对火焰着火和熄灭的直接耦合动力学影响,开发了一种定义明确的等离子体辅助燃烧系统,该系统在逆流扩散火焰中具有新颖的原位放电。通过在喷嘴出口处放置多孔金属电极,可在燃烧器喷嘴之间产生均匀的放电。通过以恒定的应变速率和氧化剂侧的O2摩尔分数同时改变燃料摩尔分数来测量激发的OH *和OH PLIF,研究了CH4 / O2 / He扩散火焰的着火和消光特性。发现在较低的O2摩尔分数下,OH *的发射强度突然变化而发生着火和熄灭,这表明存在常规的消光S曲线。然而,发现在较高的O2摩尔分数下,原位放电可以显着改变着火和熄灭的特性,并产生新的单调和完全拉伸的着火S曲线。从传统的S曲线到新的拉伸点火曲线的过渡清楚地表明,等离子体产生的活性物质可以改变低温下燃料氧化的化学动力学路径,从而导致熄灭控制的火焰稳定机制过渡点火控制的制度。通过瑞利散射技术和PLIF技术分别测量了温度和OH自由基分布,并与建模进行了比较。结果表明,发生点火的反应区的局部最高温度可能低至900K。等离子-火焰相互作用的化学动力学模型是基于在燃烧室中恒定电场强度的假设而建立的。体等离子体区域。反应路径分析进一步表明,放电产生的原子氧对于控制自由基的产生以及促进反应区中的链支化作用以增强低温点火至关重要。

著录项

相似文献

  • 外文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号